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A new approach to a posterion error estimation s outlined which i applicable 1o generad bi-p finite
clement approximations of general classes of boundary value problems, The approach makes wse of
duality arguments and is based on the element residual method (ERM). Important aspects of the
method are that it provides a systematic approach toward deriving clement boundary conditions for the
ERM: it feads to an upper bound for the global coror inn anproprinte encrgy noin, and it is valid {or
non uniforn and irreguiar f-p meshes. In the present exposition, a briet outline of the theoretical
foundations of the method is given together with the results of its application to several representative
problems. These resuits show that the approach is applicable to general lincarhy clliptic systemns.
including unsymmetrical operators, and that the method iy valid for broad classes of lincar and
non-lincar problems.

1. Introduction

In a recent paper [1]. we developed a gencral theory for a posteriori error estimation which

has
(1)
(2)

the following attributes:

it employs a special variant of the clement residual method [1-3]:

under mild assumptions, it produces estimates in convenient energy type norms which
may not be dircctly associated with the actual bilincar form of the problem under
consideration:

it employs a local duality argument that leads to a guaranteed global upper bound to the
crror and which gencralizes the duality method of Kelly [4]:

it is valid for symmetric and unsymmetric operators,

under additional assumptions, the approach can lead to asympiotically exact crror
estimators:

it 1s well suited to irregular meshes with non-uniform /-p finite clement approximations
and functions independently of the order p of the local element shape functions:

it cmploys a systematic scheme for flux balancing on clement boundarices that substantiaily
increases the quality of the local and global effectivity indices.

Carrespondence to: Mark Ainsworth, Texas Institute for Computational Mechanics, WRW 305, The University
of Texas, Austin. TX 78712, USA.
" On leave from Mathematics Department. Leicester University, Leicester, UK.

(045-7825792/305.00 © 1992 Elsevier Science Publishers BV All rights reserved
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The theory generatizes previous work on the ERM. In particubar. for the special case ot incar
triangles (7= 1), the conjecture made by Bank and Weiser 2} is confirmed: that o certain
variant ot the ERM alwayvs provides an upper bound on the error.

Our purpose in the present paper is to bricfly outline the principal features of the theory i
connection with a simple model clliptic boundary value problem and to focus on issues of
implementation. The robustness and generality of the method is demonstrated by some
applications including clliptic systems and unsvmmetrical problems. The applicabiliny of the
method to arbitrary fi-p meshes is also dllustrated. In particular. it is demonstrated that the
method viclds very good local estimates both for meshes with odd and with even order shape
functions on neighboring clements, in contrast to other techniques proposed in recent
literature.

2. Theoretical foundations

2.1. Model problem

For clarity. we begin by considering a simple modecel cliiptic boundary value problem in two
dimensions: Find « = u(x. v) such that

~Ve(aVu)+ b-Nu+cu=f in Q.
. (h
)

a '—.E =g on . =4 onf,
Jdn

where (2 is a connected Lipschitzian domain in B™ with boundary @2 = 717, In (1). the
coethicients a. b, ¢ and data . g are assumed to be such that o exists, is unigue. Is continuous
on the interior of (2 and depends coniinuously on the data in appropriatc norms. The weak
form of (1) 1s as follows: Find « € 7 such that

B(u.vy=L{v) VYve t. (2
where

r={vell'(Q)yyv=0o0nl,) (3)
and B x t ->R, L :¥—R arc the forms

Blu.v)= J“ (aNu -Ne + vb-Vu + cue) dx ($H
and A

L(v) :J' fu dx +-j guds . (3)

7] I

2.2, Partitioning

We next introduce a partitioning .2 of {2 into N = N(.2) subdomains (finite clements) £2,
where .() = (UJ 02, and construct on 2 a space 7 C 1 of piccewise polynomial functions. The
space ¥ could include arbitrary /i-p finite clement approximations of the type discussed in [5].
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Following standard finite ¢lement procedures, we suppose that o tunction @ € 1y obtained
which represents, in some sense. an approximation of the solution ¢ of (1), Our goul is 1o use
the available information to calculate an estimate of the error

e=U—u

in an appropriate norm.
With regard to the partition 2. we introduce the following notation: B, . L, are locahiza-
tions of the forms in (4) and (3).

B (u.v)= J, (a¥u -Ne + vb-NVu + cuv) dx | o)
1N
X
B(u.v)= > B (u.v). (7)
Al
L, (v)= ‘ fu dx+J_ o oguds. (%)
Joy, NN
\
L(t)= 2 L(v) (9)
AN

tor u. v € 7. Further 7, is a local subspace of ¢. with

v
=D 1. (10)
K

There now arises the issue of the norm in which we shall measure the error e For this

purpose, we introduce a symumetric. positive definite bilincar form a: # X 1 — &,

a(u.v):f (a¥Vu -Vu + cuv) dx | (i
£}
where @ and ¢ are constants which are arbitrary except for the requirement that the original
bilincar form B(-. - ) of (4) is cocrcive with respect to the norm induced by a( - . - ). That 1s,
B(u, v)
ap B ghl, Ve v (12)
e Aloll

where 8 >0 is a constant. and
loll, = Va(v.v). (13)

In adYitinn we write

\

alu. v)= 2, a,(u.v). (14)

K
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a{u, v)y= j” (aVu Ve + cuv) dy | (15)

olls x = aplv vy (16)
\‘

lelf, = 2 vl - (17)
Ao

We also introduce the averaged local flux
(n,-aVi)(s) = n, - [(1 = o, ()aVa], + oy, (s)aVil,] . (18)

where s is a point on the interelement boundary [, = af2, M a2, shared by neighboring
elements. n, is the unit veetor exterior and normal to a8, and «,, is a lincar tunction
associated with edge I,

With this notation now established. we consider the following local problem: Find &, € ¥,
such that

a(dp.w)=L.(w)— Bl w) +3€ wing-aSu)(s)ds. we 7. (19)

4'1",\

Equation (19) characterizes the local problem providing the basis for the error residual
method corresponding to the norm || -||,. The significance of (19) is embodicd in the
following theorem.

THEOREM 1. Let &, be the solution of the local problem (19) corresponding to the element
02,. Then the functions ay, of (18) can be chosen so that

llel

T , |

Ve = 2 ek (20
B ko

where B is the constant appearing in (12).

PROOF. Sec [1.6].

REMARK 1. In the case in which the bilincar from B(-.-) is symmetric and positive
definite. we can take a(-. - )= B(-. ). Then the constant 8 = I and the norm || - ||, reduces
to the standard energy norm.

REMARK 2. The introduction of the symmetric form a(-. -) is equivalent to symmetrizing
the problem (7]

REMARK 3. The conditions on the approximate solution & (that & € 7) can be weakened
considerably. Let  be a standard degree 1 basis function (a pyramid function) associated with
a regular node in 2. Then we need only require that 1 € C'UHNH(P)N t and

Blo. )= L(b) . (21)
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That is. @ need only satisfv an orthogonality condition with respect to the lowest degree basis
function.

REMARK 4. Let b =diam(£2;) and supposc that
|B(u, )| = Mi|ul|,llv]l, Vw.veE t. (22)

As an additional assumption, suppose that the following condition holds:

A -

> h'\'ff), U[(:z,\.-(z\"ﬁ) —n, - avu] ds < pllefl; . (23)
. o ')A a

Ko
where p = p(h. p) is a constant possibly depending on the mesh paramcters 2 and p. Then it
can be shown |1, 2] that
N i
2 Nyl n = M{1+00h) + Cotlell’ . (24)
Kt

where /i = max, &,. Then we have

Tx=Mlle|

—
2
tAh

~—

Al
P

N
Bllelf, < 3 116

where M depends on M, h and p. This result cstablishes the equivalence of the global a
posteriori error estimate to the true error. Moreover. if p— 0 as A~ 0 then we have M— M.
This shows that the constants appearing in (25) arc asymptotically optimal. In the case of
B(-. -) symmetric and positive definite. we have asymptotic exactness of the error estimator.

3. Implementation

The actual computation of the error cstimator may be thought of as consisting of two
distinct stages:
(a) the calculation of the linear splitting function «,, used in (18) to obtain the ‘boundary
conditions for the local problem (19).
(b) the (approximation of) the solution of thc local problem (19).
The fundamental criterion determining the choice of flux splittings used in the average (18).1s
the following:

B.(i.1)= 1""(1)+J’x~r (n, - aVi)(s)ds . (26)

A simple physical interpretation of (26) is scen in the special case a(x) =1, b(x) =10 and
c(x) = 0. For this situation (26) becomes

0= L fix)dx + JM_N_\ g(s)ds + J’.w " (n,-aVi)(s)ds. 27N
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The condition (27) proclaims that the data for ihe locat proble (19) is i equilibrium. or that
the fluxes have been equilibrated.

Kelly [4) used this same criterion to determine Hux splittings in the case of piccewise
bilincar finite clement approximation of Poisson’s equation in two dimensions. Qur approach.
while refated to Kellyv's, differs significantly in several wavs. The splittings used in our
algorithm are lincar functions. as opposed to constants: our splittings can be obtaimed using
only focal computations rather than applving a global optimization procedure: and. under mild
assumptions. achieve the cquilibration exactly (subject to rounding crror) and are applicable
to general lincar elhipue systems of seeond order partial differentiol cquations. In addition. our
approach apphes to gencral A-p fimite clement approximations on irregular mesies. with
non-uniform p and is vahid for triangular clements. quadrilateral clements or indeed combina-
tons of the two. Importantly, our approach applies cqually well to one. two or three
dimensions. )

3.1, The flux splitiing algoritiom

The complete details involved in deriving the algorithm to be presented can be found in [8].
Here. we restrict ourselves to the bare essentials necessary to implement the algorithm.

A Key role in the algorithm is played by the degree one basis functions (that is. the pyramid
functions associated with the regular nodes in the partition). Denote the regular nodes by
A B .o and fet ¢, denote the pyvramid function associated with node A (scaled so that
&, =1 at node A).

The computations are localized using the patches of elements over which the Tunctions o
have non-zero values. For case of notation. we suppose clements 2, 62, .. .. {2, constitute
the patch § | of elements on which dr, does not vanish. Some examples of possible patches are
shown in Figs. 1-3.

Assoctated with cach patch 8, is @ matrix 7. The matrix depends only on the topology of
the patch S| and not on the geometry. For this reason we refer to T as the topology matrix
for the patch. 7T, is a square matrix of size N X N, where Vs the number of elements in the
patch. Therefore. T, are typically small matrices whose sizes do not increasce as the partition s
rchined. The entries of 77, arc given by

20 -1 -1
- o 2 -1 - .
I, = _ ,‘, ! (Fig. 1). (28)

/ Q. 7 \\ S

ém . /,: ’ \ / /
: —. ) K Q, ;
7'\ e o / / S ¢ N

s ; .- (/
[t n, LT
i i - Y
[N i wormer ™

Fig. 1 Topology matrix Tor interior node on regular Fig. 2. Topelogy matrix for boundary node.

mesh.
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To
7
ic)‘ i Qs\ ;
em— 1
Q. | a /
Y
U I

Fig. 3. Topology matrix for interior node on F-irregular mesh.

T, = M (Fig. 2. (29)

2 -1 0 0 0 —17
=1 3 -1 ~1 0 0
_— 0 —1 2 -1 0 0 .
=l o o1 1 4 - -1 | (Fed). (30)
{ 0 0 -1 2 -]
L—1 Q 0 -1 —1 34
i =i,

(T, =5—1. if £ and £, are neighbours in the patch . (31)
0, otherwise

where C is the number of elements in the patch which share an edge with element 2. Some
examples of topology matrices for varicus types of patch in two dimensions are shown in Figs.
1-3.

The singular matrix 7, is then modified by adding 1 to every entry. thereby giving a new
matrix 7, with entrics

C+1. if j=i,
(7’"‘,‘)” =40, if £2, and {2 arc ncighbours in the patch . (32)
I, otherwise .

where € is as before. It may be shown [8] that T, is non-singular. In fact it is symmetric.
positive definite and consequently simple to invert numerically (using. for example. an LU
factorization).

Definc the N-vector b, with entries

(b ) =L ()~ Be(u, ¢,y + ﬁ/\' 0 P (s){n,-aVi), .ds. (33)
where
(ne-aVay, .= ln, |aVi|, +aVi|,). s€T,,. (34

Furthcrmore. for every interelement edge [, within the patch define
Prya = _J’r b (s)n- aVa]ds . (35)
K1

where
ln-aVa)=n, aVii|, +n, - aVi|,. s€T,,. (36)
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Having calculated these various quantitics. a set of constanrs ), is computed using the
procedure outhned m Fig. 4. The case when p, . vanishes requires a little extra care, details
of which can be found in [8].

The procedure in Fig. 4 is applied to cvery regular node in the mesh. The actual flux
splitting «,, used in (18) 1s then given by

FOED ag, (). seTy, . (37)
A

Most of the terms in this summation vanish due to ¢, having non-zero values on a small
number of edges. For example. in the case of regular meshes. only two terms in the
summation are non-zero, namely those corresponding to the two nodes torming the endpoints
of the cdge [, . i.e. ay, is then the lincar function which interpolates to a, |, and a,, ,, at the
cndpoints of the edge. In the case of irregular meshes the situation is more complicated with
at most three non-zero terms appearing in the sum.

It can be shown [8] that. with this choice of splitting. the condition (26) is satisfied. The
process described may appear claborate. However. the computational work entailed is rather
small by comparison with the cost of performing other standard tasks in the finite clement
method. In [8], an operation count shows that the process is of optimal order. increasing only
linearly with the number of clements in the partition.

3.2, Approximation of local problems

The approximation of the local problem (19) is performed by means of a Galerkin method
using a particular set of trial functions. Here, we shall describe the procedure we use for
quadrilateral clements,

Let {P,(1)} denote the usual Legendre polynomials on [—1, 1]. 1t will be necessary to be
able to compute the valuces of the polynomials themselves and their derivatives efficiently.
Unfortunately. in many textbooks it is suggested that these quantities be caleulated directly
from the expansion in terms of powers of x. This approach is not only unnecessarily expensive

for each regular node A do
begin .
calculate T,; )
calculate an LU factorization L, U,=T,;
for every element K& S, do
begin
calculate by ,;
calculate py; 4
end;
solve L U A =0,
for every interelement edge I, in the patch do
begin
Ugp 4= 3 + (AK,A—’\I,,/\ ) / Pxr., 4
end
end;

Fig. 4. Pseudo-code of flux splitting algorithm,
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but lcads to catastrophic build up of round-oft crrors. Therefore, we use the three term
recurrence relations, Thus | for some fixed value of vowe caleulate £ (v) and P/(v) as tollows:

Pxy=1, Pxy=x. (38)
S SN Y. S SRN
I"‘("\)mk-fl P (x)- /\_;][‘ q)y . At
and
Pi(x) =0, 1"(-\') =1, (3N)
. 2k + A+1 .
I,A ) I(".) - - ~E_..__ ~"Pi(-") - _,/\M l)!‘ l('\v) . /\ N 1 .

To caleulate the values of P (x) and /(1) in this way requires only order s operations,
Morcover. as a byproduct. one also obtains the values of all the fower order poivnomials and
their derivatives at no extra expense.

The values of P(x)..... P (x) and Pl{x).. ... P (x) are then used to compute the
functions y,(v). . ... X, (0) and y(x). ... x,(y) given by
1, 1 L3
w0\ 5 P =5 Pl =35 P,
e - T (40)
] 21 . . .
X ()= KT \ 5 W= DP () hk=3000 T
and

! 3
xl)=0. xi(v=r3Lx).  xix)=y 5 Py,
- - (41)
’A
x (X)) =\ 5 I’A Ay, k=3...., .

Let 2 =[~1.1]x]~1.1] denote the usual reference clement. The trial functions will be
defined on 2. For simplicity. assume that the finite element approximation a is a complete
polynomial of degree p on the element under consideration. Let ¢ >~ 0 be an integer: then we
define the space Va62) by

V) = (X, (W 0=sj.k=p+qandaticast onc of j. k> p}. (42)

It is scen that dim(V"“y=(p+¢+ 1Y —(p+1). The index ¢ controls the number of
increments in the polynomial degree of the space and may be used to increase the dimension
of the space.

The local approximation space is then taken to be I NV ). The diserctized
version of the local problem (19) is: Find d),\ - I,\, such 1hat

(1,\.(d~),\r. w)=L,(w)— B, (it w) + fﬂ win, -aVi)(s)ds Vwe ‘;,\, . (43)

Owing to the above assumptions and the construction of the local space. this problem always
has a unique solution.
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4. Numerical examples

In this section we present three examples (o ilustrate the performanee of the algorithm.

In order 1o compare the estimated error with the true error it s necessary to accurately
caleulate the true crror over cach element. In all our examples. the true error i« computed
using an algorithm which approximates the integral using first a4 single subdomaii and then
subdivides the region of integration into four subdomains and approximates the integral over
the tour subregions. Two estimates are thus obtained for the true value of the integral. It the
difference in these two estimates s less than 170 relative error. then the approximation is
accepted. Otherwise. the element s further subdivided mto 16 regions and so on untii
agreement between consecutive approximations 15 obuained to less than 170 relative error.

400 Svimerric elliptic operator with smooth solution

The problem we consider is: Find 1 such that
A+ u=0 1n 2. {44}

subject to the boundary conditions

w(Oo vy = (¢ 7 - Disinoy. O-ovell/2.

v, ) =u(x. 1/2)y=0. 0<x<1/2, =0, v= /200 v 12

where o = 257 The geometry of the domain {2 and the boundary conditions applied are shown
in Fig. 5.
The true solution is given by

v, vy = (exply - l)\"l + o] cexp(-aV1+ g ) sin oy, {46)

In this case. we have

Blu.v)y=1 (Vu-Vv + ue)dx (47)

{3

and we choose alie, v) = Blu. v). Theorem | opredicts that we will obtain guaranteed upper
bounds on the true error measured in the energy norm defined by B(-. - ). provided that
cquilibration of the thuxes s achieved.

The problem is sofved using uniform meshes of quadrilateral clements with uniform
polynomial degree. The tocal problemns are approximated using an increment ¢ = 2 in the jocal
space. That is. a degree p finite clement approximation is analvzed using the space V77 7 In
cach case. the cquilibration procedure is able to reduce the lick of equilibration to the level of
round oft crror on virtually every clement an the partiton.

Table T contains the results obtained for finite clement approximations of degree 1-4 on
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v
0 .
e L & %) table |

Gilobal cetfectinaty indices tor maode] problem waih

smooth solution

us(e 1)s|mw{ S -0 Do Numibwr of clements
() 1o tr 12X

L i 101290 }.OB3SAS P
T - B 007872 L0201y 1000300
Fie 5 G ' | \ . | 3 1600268 1 OOB0YS TR
e 30 Geometny and boundary Condiions lor smooth 3 0237 NITIRT RO

maodel problem.

meshes contaming 16, 64 and {28 clements. The quantity shown in the table s the ¢ffectviry
mdex {the ratio of the estimated crror to the true crror). Theorem | opredicts that the
ctfectivity jndex be greater than unity. This prediction s borne out by the results shown in
Table 1.

4.2, Cracked panel problem

Consider the problem: Find o such that
-Au =0 in 2. (48}
subject to the boundary conditions
ulr.my=0. V<r<1. gulon=0_ 0<r<1.68=0, (49)

with w(r.#) =7r' “cos '8 on the remaining portion of the boundary. The geometry of the
domain 2 is shown in Fig. 6.

The true solution is given by

w(r.8)=r""cos 8. (30)

The problem is the analogue of a cracked panel problem in lincar clasticity. with a singularity

3 1
u=1"2cos39

[
A
/S \9 /
VAN !
L TN ¢ DETRE i S RPN aU = T /
dn Singularity
Fig. 6. Geometry and boundary conditons tor crac- Fig. 7. Position of clements adjacent to singulanty in

ked panel problem. cracked pancl.
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at the ongin, In this case. we have

Blu.r)- ,VN-V(' dx {51

EX)

and we take gl ©) =« Ble. o). Theorem 1 again predicts that we will obtam upper bounds on
the true crror, provided that we equilibrate the fluxes.

In analyzing this problem, some care must be taken with the approximation ot the focal
problems. Theorem T assumes that the focal problems are sobved exactiv, which s not the case
in practice. therefore, tor the purposes of dlustrating the theory, a sequence of approat-
mations to the true solution of the focal problem s obtamed by ancrementing ¢ That s to sayv,
we compuie a sequence of approximations using the spaces

| G UL ol S0

A

until the difference i the norm of the approximation is sufficiently smuall.

Onc other feature of this particular example s the difticulty in estimating the error
clements adjacent to the singular pomt. Our theory makes no promises concerning the
ctectivity of the estimator an a single clement. Howevero we present results showing the
ostimated and the true errorn the celements adjacent to the singularity £2, and £2, (see big. 7).

Tubles 2-4 contamn results of estimating the crror in the approximation obtained using o
untform mesh of 32 quadniaterat clements with uniform polynomual degree 1 Five increments
in the local approximation space are needed before agreement is obtained. For purposes of
comparison. we also give the results obtauned when no equilibration or balancing of Huxes s
pertormed (mstead, a simple averaging s apphe ).

Tables 2 and 3 contaimn the error estimates in the clements adjacent to the singularnty £2, and
12, 'The estimate of the error obtained when equiibration of fluxes is performed is superior to
the ostimate obtamed using a simple averaging. Table 4 contans the global estimates of the
crror. ftas seen that it s necessary to approxinte the local problems accurately if one s to
obtiin the upper bound prockumed by Theorem 1

Labste 2
Bilcet of solvmg focal problem with iercasing accuracy on the estimates of Jocal error in

clement £ for crached panel (p o F0 32 clements)

Fstmated focal crror Focal effectiviry index

\U!"hl'l' .. e L e e
of With Without With Without
marements halancmye batancing balancing halancing
! 36l D005 1) (U7 3UNY 160308

N TRRNISE 63051 1) 1 U7 308d4 114606308

3 (IR R B GO D) 1103710 () JUSHH |

3 TREERIES HOROSA2( 1) 1127149 0504132

5 AN RFSS TS HoRO1760 1) 1 1 ASN7 0, 5006051

True salue ) J3INT O 136N - 1) I AHNKHN) IKLLLE L




Table 3

Mo Anxworth T Oden o v procedure tor a postettons crror estiniation

Alect of ~olving tocal problem with mcreasing accuracy on the oshimates of local crroran
Ftfect of ~ohving focal problem witn : racy on th Ty ¢ tocal

clement (2, for cracked pancl (p - 132 ¢

fsumated ocad cerron

Yo

lemients)

Local ettectvay mdex

Numboer e e e e e o et R T,

of With Without With Without

increments balancing balancing bulaneing halancing

1 0. 109130 U, {83801} U.N472X) 11275092

2 U 0uidn D INANY ] N.8472K1 1427592

3 0112848 0. 184450 (8760607 1428873

4 0113189 (184062 (.NTNTLS 1428920

N 113216 0, 184062 T YAURN PA28920
Trae value B128N12 0128812 I

Tablce 4

IREETY £

[EEEEE ]

Ettect of solving local problem with morcasing aecuracy on the ostimates of global crmor tor
£ i : A £

cracked puanel (p = 1032 clements)

Estimated global crror

Glabal ctfectivity imadex

Number e

of With Without With Without
merements hatancing batancing hatancing balancing
| 0183726 ). 2068949 3.92{963 FOAR2AS

2 1183726 (.206849 BUUR3 TH3AR2IN

3 0. 199198 1. 208800 (1999604 1 AMT778N

4 0.201876 0. 2090060 1.O13042 Lot 2

3 0. 202664 020149 1.0169497 1 4us3y

True value

0.199277

4.199277

FLOCHH OO

RUELYE T

Tuble 5

Effect of solving local problem with increasimg accuracy on the estimates of tocal error in

clement €2, tor cracked pancl (p = 1,128 elements)

Estimated focal error

Local effectivity mdev

R

Number -
of With Without With Without
merements hiancing balancing baluncing balancing
] 0.927019¢ - 1) 104438470 1) 119539303 .439353

2 0.927019¢ - 1) 0443847 1) 1.930303 {1.459353

3 0. 1804800 0.474636(- 1) ONT7179 491218

4 0. 197279((H 0479842 1 1 1H26R . JUH6HS

5 0. 107987¢(0) L ARI6OY( |y 111753496 O JOKR4U6
True value 966244 - 1) 0.9660244( 1) 1000000 1. 008000

Tables 5-7 show the corresponding results obtained when the mesh is refined uniformly to
128 clements of degree one. The results obtained are similar to the case of 32 clements. Tables
8-10 contain the results obtained when the degree of the clements s increased uniformly to
degree 2 on 32 clements. Once again, the results show the supenority of the estimate obtained
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Tuble 6
Flieet of solving tocal problem wath increasing accuracy on the estinates of local errorin
clement €2, tor cracked panct (p = 10128 clements)

Ustimated local error Local effectnaty imdes

Nl”nhcr o et s s S i 2t ot ot e e

of With Without With Without

ncrements balancing haluncing balancing balancing

1 V762733 - 1) U, 12852211 HN3567Y L4d7us

2 (1L.7627533(- 1) O128522¢t (1835679 1. 441798

3 (1788600 1) 0.128637() 884749 1. 443088

4 0791049~ 1) 0128641 0) 11887422 1443433

3 079235 D) 0. 128642(0) 0. .887631 443144

True value O8G0I (- 1) 0891401 D) INET VLR OO0
Table 7

Litect of solving local problem with inereasing accuracy on the estimates ol glohul ervor tor
cracked panel (p = 10128 clements)

Estimated global error Global ctfectivity index
Number e
of With Without With Without
increments balancing balancing halancing balancing
1 0129397 0. 145495 D847 1032766
2 (. 129397 0145495 LYI8497 L.U32766
3 4. 140126 0. 146813 (LY946SS 1042121
4 {1 1419K83 0, 146992 1007836 F.O43392
s . 142531 (1. 147033 1011726 FLOJ3R2S
Truc value 0. 140879 0. 140879 OO0 1.800000

Table 8
Effect of solving local problem with increasing accuracy on the estimates of local error in
clement £2, for cracked panel (p =232 clements)

Esumated local error Local cffecuvity index
Number
of With Without With Without
increments baluncing balancing halancing balancing
! (LT79887( - 1) 0.305007(-- 1) 0971502 (L504516
2 G.877218( - 1) (1.443006( -1, 1002747 0.551851
3 0.916439(—1) G.457423(~ 1) 1. 141605 (.36U%14
4 O924515¢- 1) .466069( - 1) P I316063 (LASDAN0
S 0.932539(-- 1) 0.463873(- 1) L 161660 0.577845
True value 0.802764 1) 0.802764( - 1) [.O0G0O00 1060000

using cquilibrated fluxes. In cach case. the result of Theorem 1 is verified. although it is
necessary 1o solve the local problems very accurately.
4.3. Unsymmerric elliptic system

As a final example. we consider the unsymmetric clliptic system with non-constant
convection given by: Find «, «, such that
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Table 9
Eftect of solving local problem with increasing accuraey on the estimates of local error 1o

clement 12, tor cracked panct {(p = 2032 clements)
R’ f f

tstimated locad error Focal eftectivity mdes
Number - — o
of With Without With Without
merements baluncing baluncing balancing balancaing
] 0532473 1) 0.663335( - 1) 0.686000 (1.837427
2 0.613689¢ - 1) 3.717056{ 1) (). 790633 0.923503
3 O.628189¢- 1) 0.8480914 - 1) (.80431 3 1083777
4 0.644079¢-- 1) 0.876593( - 1) (1.82UTRS 1129339
N 0.648299(- 1) 0.912130(- 1) (8332722 1175122
True value 0.776200(- 1) 0.776200(- 1) 1 OO0GHO IREVECEY

Table 10
Effect of solving local problem with increasing accuricy on the estimates of global crror tor cracked pancl
(p=2.32 clements)

Estimated global error Global eftectivity idex
Number
of With Without With Without
increments batancing balancing balancing balancing
| (1LY48095( - 1) 0.790096( 1) (.838355 11.OURS L0
2 0. 107495() Q903738 - 1) 0.950753 1.R00207
3 0 HTISS00) 0.980423¢ - 1) (1986618 1LNOT 148
4 O.113117() 0. 10071510} £.000478 0.890787
5 01 14017() . 104075(0) 1 D0RA38 (1920505
True value (1. 113063(0) 0. 113063¢0) [REENELH 1 OO
du, o,
e AUyt X oy T v, -1, =0
ax o oay ’ - )
(52)
A, ou, .
—fAu,tx —= -y — ~xyu, +u,=0 1n (2,
- ar  Cdy - -
where € =1/100, subject to the boundary conditions
u, =expl(x~—y ~1)/e}]. u, = xyexpl(x” —y —~ 1)/e] onl, (53)
and .
du, N a
£ =en Vexpl(x—y —1)/e].
¢ -
. (54)
diu, > N -
o= en Vxyexp[(x- =y —1)/e] on .
a1

where (2. I, and I, arc shown in Fig. &.
The truc solution to this problem is given by

*n
‘N
S

u, =expl(x’ =y — 1) /e]. w, = xyexp[(x’ =y’ ~1)/e]. (
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.3 Ty (1.9
[‘D l‘N
(3.0) Iy (1.0)

Fig. 8. Geometry and houndary condittons tor unsvmmetric efliptic system

The main feature of the solution is the presence of u strong boundary laver ctiect along the
right-hand wall of the domain caused by the non-constant convection dominated flow fickd

b=(x.-y).
In this casc. the bilincar form B(-. - ) is unsvmmetric. We choose the bilincar forma(-. - )
to be
a(u. v) :J (eVu, -Vu, + eV, Yo, + v o) + we ) de (36)
{2 - ) oo

The theory presented in [6] shows that the crror estimator bounds the true error meusured in
the symmetrized norm. For the purposes of illustration, in this example we compute the true
error in the symmetrized norm explicitly. It is this quantity which is labelled as the true error
in Table 11.

The presence of the boundary laver indicates that an adaptive finite clement analvsis based
on refining the mesh and cnriching the degree of the approximation is suitable. The sequence
of meshes gencerated during the analysis 1s shown in Figs. 9. 120 15, 18 and 20. The meshes are
not only irregular but contain clements of differing polynomial degree. The final mesh
contains clements of degree six near the boundary layer. Nevertheless, the behaviour of the
crror estimator remains highly satisfactory as shown by the results in Table 11,

One source of concern when estimating crrors for this type of problem is that the
distribution of the estimated error will not agree with the distribution of the true error owing
to the convective effect. Therefore, in Figs. 9-23, we present plots showing the distribution of
the truc and estimated errors. It 1s observed that the distribution of the estimated crror closely
reflects the actual error distribution.

Table 11
Behaviour of crror estimators for umsvimmetric efliptic system

Global effectivity index

Estimated global error

Degrees Troe e

Muesh of global With Without With Without
number freedom crror balancing balancing balancing hadanving
1 25 0.400129(0) (.420103((1) 042021 8¢1) 149919 1030206

2 Sl (1.145063(0) 0.134794(0) (. 147063(h 0998146 13787

3 11 0.563992(- 1) 0.564022(- 1) 0.36439¢- 1) 1.OODOS3 FOI290

4 165 0.636845( - 2) 0.647044( - 2) 0.649044( - 2) 100235 1003300

5 340 0.263345¢(-2) 0.272907(¢ 2) 0.274071( - 2) 1.036310 1040730
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MESH 1

o ) D.O.F=25

Fig. 9. Adaptive analysis of unsymmetric elliptic svstem. Mesh 1

MIN= 0.570E-03
MAX=0.3003809
ERROP=0.400128¢
D.O.F=2S

0 B 0075 ) s ~D2s 0325

Fig. 10, Adaptive analysis of unsymmetric elliptic system. Distribution of true error on Mesh 1
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MESH 1

MIN= 0.235E-03
MAX=0.3045585
ERROR=0.4201037
DO.F=25

G 0.073 a3 0.25 0.325

Fig. 11, Adaptive analysis of unsymmetric clliptic system. Distribution of estimated crror on Mesh 1.

D.O.F= 51

Fig. 12, Adaptive analysis of unsymmetric clliptic svstem. Mesh 2.




Fig.

M. Ainsworth, 1. T Oden. A procedure for a posteriori crror estimation

MESH 2

MIN=0.209E-03
MAX=0.1125701

; L ERROR=0.1450631
oo 006 009 012 - DOF=S

MESH 2
-
. i MIN=0.108E-02
1 MAX=0.112969
T T EER " 77T ERROR=0.1447¢
0 003 0.06 .()_(}9 .12 . D.0.F= 51

14, Adaptive analysis of unsymmcetric elliptic system. Distribution of estimated error on Mesh 2.

\)1
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MESH 3

DOF=11

p= . e
i 2 3 4 56 i 8
Fig. 15, Adaptive analysis of unsymmetric elliptic system. Mesh 3.
MESH 3
]
: e s I MIN=0.203E-04
N _ MAX=0.0443252
L7090 ERROR=0.0563%9
0 o bouzs  owms  oows  osws  DOFsll

Fig. 16, Adaptive analysis of unsymmetric elliptic svstem. Distribution of true crror on Mcesh 3.
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MESH 3

MIN= 0.355E-04
MAX=0.0444163
ERROR=0.056402.
0045 D.OF= 11!

003375

Fig. 17. Adaptive analysis of unsvymmetric clliptic system. Distribution of estimated crror on Mesh 3.

D.O.F= 165

Fig. 18. Adaptive analysis of unsymmetric clliptic system. Mesh 4,
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MESH 4

MIN= 0.647E-05
MAX=0.0042109
- RSl T ERROR=0.0064684
o Towee _ ooom oo oo | DO

Fig. 19. Adaptive analysis of unsymmetric elliptic system. Distribution of true error on Mesh 4.

I MIN=0.532E-05
MAX=0.0042149
ERROR=0.0064764

0 0.900E- 0002t 0.00% noas = DOF=165

Fig. 20. Adaptive analysis of unsymmectric clliptic system. Distribution of estimated crror on Mesh 4,




M. Aiivworth, J.T. Oden. A procedure for a posteriort error estimalion

MESH 5§

D.O.F= 340
Fig. 21. Adaptive analvsis of unsymmetric clliptic system. Mesh 5.
MESH 5
- ) [ i
{
MIN= 0.633E-05
MAX=0.0018429
. o ERROR=0.002633.
0 0.875E- 00015 000875 D.O.F= 340

Adaptive analysis of unsymmetric elliptic system. Distribution of true ¢rror on Mesh 5.




L}
Y6 M Ainsworth, 1T Cden. X procedure Tor o postertori error extunation
MESH § Aggesston For '
NTIS GRAXI
| pric TAR 0
Unannounced ]
Justification gy
By
Disjridbution/
Avallability Ccdes
{Avail and/or
Dist ‘ Specisal
A
MIN= 0.525E-(n =
- MAX=0,001957] a
T B ERROR=0.0027291 O
5 0430k BO0105 000165 w0021 D.0.7= 340 &
>
Fre 230 Adaptive analvsis of unsammetrie elliptic ssstem. Distribution ol estimated crror on Mesh S, 5
Acknowledgment 2
w
The support ~f this work by ONR under grant NOOO}4-89-J-1451. NSE under crant g
ASC-9HTT540 and ARO under contract DAALO3-89-K-0120 is gratetully acknowledged. £
s
References
HE M. Ainsworth and 11 Odens A unificd approach to o posteriont ervor esumation based on element residual
methads. unpublished,
(2] RE Bank and AL Weiser, Some o posteriornt error estimators tor ethptic partiat ditfterental equations, Math,
Camp. 34 (JURS, O83 30
[3] 1T Oden. bl Dewhowiers, TF. Stroaboulis and Phe Devioos Adaptive methods for probloems msolid and thuid
mechames. me L Babushin OO0 Zaenkiewies, L Gago and FLOR de AL Oliveira. eds.o Accuracy Bstmates and
Adaptive Retinements i Fiite Blement Computations (Wiles, New York. 1986) 249280
(4 DWKey. Ehe selt equibbration of residuads and complementary coror estimates in the timite clement method,
Internat b Numer. Methods Foagre. 20 (1984) 1491 - 1500,
B R Odens o Doembowies. W Rachowiez andt FAL Wostermann, Towards o universal A-p fimite clement
strateesy . Part 20 A posterton error estimation, Comput. Methods Appl Mech, Boagrg. 77 (19N0) 113 IR0,
fe] M Apsworth and 1T Odens A podterian coor ostimiators for second order cthptic svatems Part \

Fheorencal foundation wand a posterion crror analvas. Computers e Mathemanes and Appheations (in pressi
[71 11 Oden. L Demkowicz. W. Rachowics and T A Westermann, A posterton enor amalvsis m Bniic elements

The clement roadaal method tor swmmetrizable problems with applications o compressible Buler and
Ninver Stokes equations. Compu Methods Appl. Mech. Eagrg. 82 ¢1990) 183 203,
ISEM Amsworth and JoE Odene A podterion error estimators tor second order elliptic ssstems. Part 20 An
optimed order process for caleudating selt cqulibratimg fluxes. Computer o Mathematics with Appheations (in
pu_‘\\)

[9) T Babuska and WO Rheinholdt. A posterions error estinntes Tor adaptive finite clement computations. STAM
JoNumer. Anall 15 (1978) 73 789




